
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2021

1 Instructor: Daniel Llamocca

Solutions - Homework 3
(Due date: November 3rd @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (10 PTS)

▪ Complete the timing diagram for the flip flop and the latch shown below: (6 pts)

▪ Complete the timing diagram of the circuit shown below. (4 pts)

𝑄𝑡+1 ← 𝑇𝑄𝑡

PROBLEM 2 (23 PTS)
▪ Complete the timing diagram of the circuit shown below: (7 pts)

▪ Complete the timing diagram of the circuit shown below: (6 pts)

𝑄𝑡+1 ← 𝑎𝑑𝑄𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

clock

resetn

Q

T Q

Qclock

resetn

T

T

D

resetn

QD Q

QLD Q

Q

Latch

E

clk

clk

resetn

D

Q

QL

J

K

x

Q

y

clk

x

resetn

y

Q

clk

resetn

D Q

resetn

Q

clk

d

a

clk

resetn

Q

d

a

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2021

2 Instructor: Daniel Llamocca

▪ Complete the timing diagram of the circuit shown below: (10 pts)

𝑄𝑡+1 ← 𝑎𝑏 + 𝑎𝑄𝑡 + 𝑏𝑄𝑡

PROBLEM 3 (17 PTS)
▪ With a D flip flop and logic gates, sketch the circuit whose excitation equation

is given by (4 pts):

✓ 𝑄(𝑡 + 1) ← 𝑥𝑄(𝑡)̅̅ ̅̅ ̅̅ + (𝑦̅𝑄(𝑡)̅̅ ̅̅ ̅̅)

▪ Given the following circuit: (8 pts)

✓ Get the excitation equations for each flip flop output.
✓ Complete the timing diagram of the circuit. 𝑄 = 𝑄3𝑄2𝑄1𝑄0.

𝑄0(𝑡 + 1) ← 𝑄1(𝑡)
𝑄1(𝑡 + 1) ← 𝑄2(𝑡)
𝑄2(𝑡 + 1) ← 𝑄3(𝑡)
𝑄3(𝑡 + 1) ← 𝑥𝑄0(𝑡)

▪ Complete the timing diagram of the circuit whose VHDL description is shown below. Also, get the excitation equation for 𝑞.

library ieee;

use ieee.std_logic_1164.all;

entity circ is

 port (prn, a,x,clk: in std_logic;

 q: out std_logic);

end circ;

architecture t of circ is

 signal qt: std_logic;

begin

 process (prn, clk, a, x)

 begin

 if prn = ‘0’ then

 qt <= ‘1’;

 elsif (clk’event and clk = ‘0’) then

 if x = ‘0’ then

 qt <= qt xor not(a);

 end if;

 end if;

 end process;

 q <= qt;

end t;

𝑞(𝑡 + 1) ← 𝑥̅(𝑎̅𝑞(𝑡)) + 𝑥𝑞(𝑡)

D Q

resetn

D Q D Q D Q

clk

Q3

clk

resetn

Q 0000

x

x

Q2 Q1 Q0

0000 1000 0100 0010 0001 0000 0000 0000 0000 0000 0000 0000 1000

clk

a

prn

x

Q

clock

D

rstn

clk

a

resetn

b

s

Q

cout

FA

s

resetn

Full
Adder

Q cout
D

x y

cincout

s

Q

clk

a b

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2021

3 Instructor: Daniel Llamocca

PROBLEM 4 (14 PTS)
▪ Given the following circuit, complete the timing diagram (signals 𝐷𝑂, 𝑄, and 𝐷𝐴𝑇𝐴).

The LUT 6-to-6 implements the following function: 𝑂𝐿𝑈𝑇 = ⌈𝐼𝐿𝑈𝑇0.79⌉, where 𝐼𝐿𝑈𝑇 is a 6-bit unsigned number.

For example: 𝐼𝐿𝑈𝑇 = 35 (1000112) → 𝑂𝐿𝑈𝑇 = ⌈350.79⌉ = 17 (0100012)

PROBLEM 5 (20 PTS)
▪ For the following circuit (4-bit parallel/serial load shift register with enable input) we have: 𝑄 = 𝑄3𝑄2𝑄1𝑄0. 𝐷 = 𝐷3𝐷2𝐷1𝐷0.

When E=1: If s_l=0 (shifting operation). If s_l=1 (parallel load).s

✓ Write a structural VHDL code. You MUST create a file for: i) flip flop, ii) MUX 2-to-1, and iii) top file (where you will

interconnect the flip flops and MUXes). (10 pts)
✓ Write a VHDL testbench according to the timing diagram shown below. Complete the timing diagram by simulating your

circuit (Behavioral Simulation). The clock frequency must be 100 MHz with 50% duty cycle. (10 pts)

▪ Upload (as a .zip file) the following files to Moodle (an assignment will be created):

✓ VHDL code files and testbench

✓ A screenshot of your simulation showing the results for Q (this is on top of you completing the timing diagram below).

VHDL Code: Top File
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity my_st_shiftreg is

 generic (N: INTEGER:= 4;

 DIR: STRING:= "RIGHT"); -- RIGHT/LEFT

 port (D: in std_logic_vector (N-1 downto 0);

 resetn, clock, din, E, s_l: in std_logic;

 Q: out std_logic_vector (N-1 downto 0));

end my_st_shiftreg;

architecture structure of my_st_shiftreg is

 component dffe

 port (d : in STD_LOGIC;

 clrn, prn, clk, ena: in std_logic;

 q : out STD_LOGIC);

 end component;

 component mux2to1

 port (a,b, sel : in std_logic;

 y : out std_logic);

 end component;

 signal ds, md, Qt: std_logic_vector (N-1 downto 0);

begin

LUT
6-to-6

6 6

OE

DI DO DATA6
D Q

clk

resetn

6

E

I
L
U
T

O
L
U
T

Q

clk

resetn

OE

DI

DO

101110 01001 111110 101010

000000 010101 001011 011011 010100

010011DATA 101110 111110 101010

Q 000000 101110 010011 111110 101010

010101 001011 011011 010100

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2021

4 Instructor: Daniel Llamocca

a0: assert (DIR = "LEFT" or DIR = "RIGHT")

 report "DIR can only be LEFT or RIGHT"

 severity error;

rr: if DIR = "RIGHT" generate

 ds(N-1) <= din;

 ds(N-2 downto 0) <= Qt(N-1 downto 1);

 end generate;

rl: if DIR = "LEFT" generate

 ds(0) <= din;

 ds(N-1 downto 1) <= Qt(N-2 downto 0);

 end generate;

ti: for i in N-1 downto 0 generate

 fi: dffe port map (d => md(i), clrn => resetn, prn =>'1', clk => clock, ena => E, q => Qt(i));

 mi: mux2to1 port map (a => ds(i), b => D(i), sel => s_l, y => md(i));

 end generate;

 Q <= Qt;

end structure;

VHDL Code: D-Type flip flop

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dffe is

 port (d : in STD_LOGIC;

 clrn, prn, clk, ena: in std_logic;

 q : out STD_LOGIC);

end dffe;

architecture behaviour of dffe is

begin

 process (clk, ena, prn, clrn)

 begin

 if clrn = '0' then q <= '0';

 elsif prn = '0' then q <= '1';

 elsif (clk'event and clk='1') then

 if ena = '1' then q <= d; end if;

 end if;

 end process;

 end behaviour;

VHDL Code: MUX 2-to-1

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity mux2to1 is

 port (a,b, sel: in std_logic;

 y : out std_logic);

end mux2to1;

architecture structure of mux2to1 is

begin

 with sel select

 y <= a when '0',

 b when others;

end structure;

VHDL Tesbench:
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY tb_my_st_shiftreg IS

 generic (N: INTEGER:= 4);

END tb_my_st_shiftreg;

ARCHITECTURE behavior OF tb_my_st_shiftreg IS

 COMPONENT my_st_shiftreg

 PORT(D : IN std_logic_vector(N-1 downto 0);

 resetn, clock, din : IN std_logic;

 E, s_l : IN std_logic;

 Q : OUT std_logic_vector(N-1 downto 0));

 END COMPONENT;

 --Inputs

 signal D : std_logic_vector(N-1 downto 0) := (others => '0');

 signal resetn : std_logic := '0';

 signal clock : std_logic := '0';

 signal din : std_logic := '0';

 signal E : std_logic := '0';

 signal s_l : std_logic := '0';

 --Outputs

 signal Q : std_logic_vector(N-1 downto 0);

 -- Clock period definitions

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2021

5 Instructor: Daniel Llamocca

 constant T : time := 10 ns;

BEGIN

 -- Instantiate the Unit Under Test (UUT)

 uut: my_st_shiftreg PORT MAP (D => D, resetn => resetn, clock => clock, din => din,

 E => E, s_l => s_l, Q => Q);

 -- Clock process definitions

 clock_process: process

 begin

 clock <= '0'; wait for T/2;

 clock <= '1'; wait for T/2;

 end process;

 -- Stimulus process

 stim_proc: process

 begin

resetn <= '0'; wait for 100 ns;

D <= "1000"; din <= '1'; E <= '0'; s_l <= '1'; wait for T;

resetn <= '1';

D <= "1000"; din <= '1'; E <= '1'; s_l <= '1'; wait for T;

D <= "1000"; din <= '0'; E <= '1'; s_l <= '0'; wait for T;

D <= "1010"; din <= '0'; E <= '1'; s_l <= '1'; wait for T;

D <= "1010"; din <= '1'; E <= '1'; s_l <= '1'; wait for T;

D <= "1010"; din <= '1'; E <= '1'; s_l <= '1'; wait for T;

D <= "1010"; din <= '0'; E <= '0'; s_l <= '1'; wait for T;

D <= "1101"; din <= '1'; E <= '0'; s_l <= '0'; wait for T;

D <= "1101"; din <= '0'; E <= '1'; s_l <= '0'; wait for T;

D <= "1101"; din <= '0'; E <= '1'; s_l <= '1'; wait for T;

D <= "1110"; din <= '0'; E <= '1'; s_l <= '1'; wait for T;

D <= "1110"; din <= '1'; E <= '1'; s_l <= '0'; wait for T;

D <= "1110"; din <= '1'; E <= '1'; s_l <= '1'; wait for T;

D <= "1110"; din <= '0'; E <= '0'; s_l <= '1'; wait for T;

D <= "1011"; din <= '0'; E <= '1'; s_l <= '1'; wait for T;

D <= "1011"; din <= '1'; E <= '1'; s_l <= '0'; wait for T;

D <= "1011"; din <= '0'; E <= '1'; s_l <= '1'; wait for T;

wait;

 end process;

END;

11101101

D Q

E

clk

resetn

0 1

din D3

D Q

E

0 1

D2

D Q

E

0 1

D1

D Q

E

0 1

D0s_l

clk

din

resetn

Q

D

E

0000

E

1000

s_l

1010 1011

0000 1000 0100 1010 1010 1010 1010 1010 0101 1101 1110 1111 1110 1110 1011 1101 1011

Q0Q1Q2Q3

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2021

6 Instructor: Daniel Llamocca

PROBLEM 6 (8 PTS)
▪ Complete the timing diagram (output DO) of the

following Random Memory Access (RAM) Emulator.

▪ RAM Emulator: It has 8 addresses, where each

address holds a 4-bit data. The memory positions

are implemented by 4-bit registers. The resetn and

clock signals are shared by all the registers. Data is

written or read onto/from one of the registers

(selected by the signal address).

▪ Operations:

✓ Writing onto memory (wr_rd=’1’): The 4-bit

input data (DI) is written into one of the 8

registers. The address signal selects which
register is to be written.

 For example: if address = “101”, then the

value of DI is written into register 5.

 Note that because the BusMUX 8-to-1

includes an enable input, if wr_rd=1, then

the BusMUX outputs are 0’s.

✓ Reading from memory (wr_rd=’0’): The address

signal selects the register from which data is
read. This data appears on the BusMUX output.

 For example: If address = “010”, then data

from register 2 appears on BusMUX output.

PROBLEM 7 (8 PTS)
▪ Attach your Project Status Report (no more than 1 page, single-spaced,

2 columns, only one submission per group). This report should contain
the initial status of your project. For formatting, use the provided template
(Final Project – Report Template.docx). The sections included in

the template are the ones required in your Final Report. At this stage, you
are only required to:
✓ Include a (draft) project description and title.
✓ Include a draft Block Diagram of your hardware architecture.

▪ As a guideline, the figure shows a simple Block Diagram. There are input and output signals, as well as internal components

along with their interconnection.
✓ At this stage, only a rough draft is required. There is no need to go into details: it is enough to show the tentative top-

level components that would constitute your system as well as the tentative inputs and outputs.

▪ Only student is needed to attach the report (make sure to indicate all the team members).

In
p

u
ts

O
u

tp
u

ts

...

...

Block Diagram

Decoder

a
d
d
r
e
s
s

w
r
_
r
d

D
I

4
E

D

E

D

E

D

E

D

E

D

E

D

E

D

E

D

Q

Q

Q

Q

Q

Q

Q

Q

4

M
U
X

3

E

c
l
o
c
k

r
e
s
e
t
n

0

1

2

3

4

5

6

7

4

4

3

DO

wr_rd

E

0111

101111110

1001 1100

011 100 010011001000111

clock

resetn

address

wr_rd

DI

000 001 010 101 110 100 000

000011010110 1010 1011 1111

DO 1101111110110000 0000 10011010011000000000 0000 0000 0000 0000 0111 1100 0110

	Problem 1 (10 pts)
	Problem 2 (23 pts)
	Problem 3 (17 pts)
	Problem 4 (14 pts)
	Problem 6 (8 pts)
	Problem 7 (8 pts)

